
High Resolution Finite Volume Parallel Simulations of Mould Filling
and Binary Alloy Solidification on Unstructured 3-D Meshes*

A.V. ReddyT, D.B. Kotheq, C.Beckermann$, R. C.Ferrell+, and K.L. Lam#

Abstract
The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation
tool (known as Telluridel) that employs robust, high-resolution finite volume algorithms for
incompressible fluid flow, volume tracking of interfaces, and solidification physics on 3-D
unstructured meshes. The finite volume algorithms are efficient, parallel, and robust, and are based
on colocated cell-centered schemes that are formally second order in time and space. The flow
algorithm is a 3-D extension of recent efforts on projection method solutions of the Navier-Stokes
(NS) equations. Our piecewise-planar volume tracking algorithm can accurately track the
topologically-complex free surfaces present during mold filling. Coupled to our flow algorithm is a
comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat
transfer, solute redistribution, and melt convection, as well as a microscopic description of
segregation. Our algorithms yield high-fidelity solutions on a variety of meshes, ranging from
structured/orthogonal meshes to fully-unstructured (finite element) meshes. Key computer science
developments have enabled us to efficiently parallelize our unstructured mesh algorithms on both
distributed and shared memory computing platforms. These include our object-based use of
Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear
systems of equations (JTpack90). Examples of our current capabilities are illustrated with
simulations of mold filling and solidification of 3-D components currently being poured in LANL
foundries.

Introduction
Driven by demands on quality and control of microstructure of materials, modeling of casting

processes is being increasingly relied upon to predict potential solidification defects and thus
improve casting practices, reduce foundry costs, and aid in the design of new and improved
materials. Casting simulation tools must capture complicated cast geometries, necessitating the use
of unstructured meshes. Most finite volume algorithms, however, are restricted to orthogonal
meshes, and hence stair-step boundaries, thus introducing unnecessary errors. Simulation accuracy
also depends on the number of computational cells used to partition the physical domain. Unless a
simulation can be performed in parallel (where multiple processors are coordinated to perform the
work simultaneously), CPU time and memory requirements become unacceptable when desired
simulation accuracy and length scale resolution calls for large meshes. This is especially true in 3-
D, hence parallelism is imperative in a modern casting simulation tool.

Physical Model
We are currently modeling alloy solidification with a simplified version of the volume

averaged two-phase model of Ni and Beckermann [1], where the solid phase is assumed to be
stationary. The governing equations are summarized in reference 2, and include mass, momentum,
energy and species conservation equations that are valid in the single-phase liquid and solid regions
as well as in the mushy zone. They are supplemented by phase diagram relations, a permeability
expression, a back-diffusion model, and others. Simplified energy and species equations are
presented in Table 1 to facilitate discussion of the phase change algorithm below.

*Supported by the Department of Energy Accelerated Strategic Computing Initiative Program.
fLANL, Fluid Dynamics Group T-3, Theoretical Division, Los Alamos, NM 87545 (arrarzd@kznLgov)
TLANL, Fluid Dynamics Group T-3, Theoretical Division, Los Alamos, NM 87545 (dbk@kzn&cw)
$IXept.of Nlech”.Eng., Univ. of Iowa, Iowa City, IA 52245 (becker@ icaen. uiowa. edu)
‘Cambridge Power Computing Associates Ltd., 2 Still St., Brookline, MA 02146 ~erreU@cpca.com.)
#LANL, Engineering Analysis Group ESA-EA, Los Alamos, NM 87545 (klmz@kml.gov)
1 For more information on Telluride, see http://gnarly.lanl.gov/Telluride/Telluride.html.

A

Numerical Method
The system of conservation equations are integrated over a control (cell) volume to yield

their integral (weak) form. Volume integrals are then converted to face integrals, which are
approximated as discrete sums over faces. Second-order spatial and temporal accuracy results
when face quantities are estimated with monotonicity-preserving time-centered Taylor series
expansions. Our overall solution method integrates one time step with a series of fractional
substeps, where each substep approximates a selected term of the conservation equations (e.g.,
advection, viscosity, etc.). This fractional-step method allows our algorithms to be developed in an
accurate and modular fashion, and enables easy addition of new physical models.
Incompressible Flow Algorithm

LANL has a long history and made important contributions in the development of
computational methods for modeling incompressible interracial (e.g., free surface) flows. A
particularly important contribution occurred in 1965 with the Marker-and-Cell (MAC) method,
which remains (along with its successors) a popular choice to this day. A recent example of a
MAC successor is RIPPLE [3], which has become a very popular model for 2-D free surface
flows because of its algorithmic and physical model improvements, most notably the continuum
surface force (CSF) model for surface tension [4]. Since the inception of the MAC method,
numerous advances have taken place in the development of incompressible interracial flow
algorithms. Perhaps most notable is the recent work of Bell, Colella, and coworkers [5,6] in
devising high resolution projection method solutions of the Navier-Stokes (NS) equations coupled
with modern interface tracking algorithms [7]. This approach has yielded high-fidelity flow
solutions that are fully second-order in time and space. The methodology borrows in large part
from algorithms devised for high-speed flow, by coupling projection methods with high-order
Godunov advection and interface tracking.

Analysis and refinement of these projection methods has resulted in an overall NS solution
algorithm that is robust and accurate [8]. We have incorporated material interface variable-density
effects (e.g., due to free surfaces) into our flow algorithm with the addition of various modern
interface tracking methods [9]. Because of our need to model LANL gravity-pour mold-filling
scenarios, we have considered only those interface tracking algorithms capable of following
surfaces that undergo gross topology change. In designing interface tracking methods, they must
extend to 3-D and have no restrictions on the topological complexity or the number of interfaces
that may be represented. After extensively studying many possible approaches [9], our design
constraints have led us to PLIC (piecewise-linear interface calculation) volume tracking methods
[10,11].

We have extended our PLIC algorithm to-generalized 3-D hexahedra grids [7]. Our
algorithm can track topologically complex fluid interfaces on these meshes, while maintaining an
interracial width of one cell. This is in contrast to high-order continuum advection schemes, where
interracial discontinuities can be smeared over several cells after advection and/or topological
change [9]. We estimate interface geometry from local fluid volume data, and assume interfaces to
be locally planar within each cell. Knowledge of the interface geometry allows partitioning of total
volume fluxes into individual material volume fluxes. Total fluid volume, by construction, is
conserved rigorously.

We have extended our projection-based NS solution method to 3-D unstructured grids
without needlessly sacrificing robustness, accuracy, or efficiency. Our current approach has
borrowed in part from techniques originating in the aerodynamics comnmnity, an example being
the least-squares reconstruction schemes devised by Barth [12], which maintain high fidelity on
complex unstructured meshes. We have also extended a 3-D unsplit advection technique [13] to
unstructured meshes, which avoids operator-splitting and allows consistent use-of--higha~xler.
monotone acivection in incompressible flows.
Phase Change Algorithm

Phase change in pure materials occurs at a constant temperature. In such situations the
phase change rate is obtained from solutions to an enthalpy conservation equation. However, alloy
solidification is more complicated, requiring solutions to both enthalpy and species conservation

>> “’

equations. The species and enthalpy conservation equations given in Table 1 are intimately coupled
through the phase change rate term (il(p,e,)/ th). To achieve efficient convergence in the iterative
solution of this system of equations, a good estimate for the phase change rate is required. Several
methods have been proposed for updating the phase change rate during each solution iteration.
Schneider and Beckermann [2] propose a method which explicitly solves for the phase change rate
by combining the discretized enthalpy and species equations. Voller and Swarninathan [14]
propose methods in whichthe phase change rate is linearized as a truncated Taylor series, and old
iteration values are then used to estimate the linear term. Here we use a different approach, in
which the phase change rate is estimated using an expression derived from the binary phase
diagram and the species conservation equations. This method is efficient and robust.

In our iterative scheme, we estimate the energy source due to phase change (Table 1) at
iteration level m+l as

m+l~m+ 1
S = (h, – h,)~(p,&,)/ilt s (hl - hs)(ps S – p:&;) /at , (1)

where the superscript o refers to the pre~~~u~~~e step. Following Voller and Swaminathan [14], a
truncated Taylor series expansion for p~ ES gives

m+ l~m+ 1 ‘(ps&s) ~m+l
Ps ,s = P:&: + dT - Tm) , (2)

which, when substituted into Eq. (1), yields a linear source term (in temperature) in the enthalpy

equation. A a good estimate for d(~&~)/dT,however, is needed before efficient convergence can be

realized. An outline of the derivation of a general expression for this term follows.
After discretizing and rearranging the solid species equation (Table 1), one can obtain

%PSDS
.5 & +~t(Csi - ~)>P#s = P%)% + % @ J ~

s
and, a similar discretization of the liquid species equation yields

%/PsDs
P~&~cl = P~&~c~ + (~ - ~i)3(Ps&s) + , at(cs - $i),

(3)

(4)
1-
S

where C;is the liquid species concentration after advective transport, i.e., C; - C; is the species
concentration change due to advection (flow). (Note that solid is stationary and hence its
concentration does not change during the advection step).

We can derive an expression for d(~s)/dTby performing the following three steps. First,
substitute binary phase diagram relations (for fiquid and interracial solid concentrations) in Eqs. (3)
and (4). Second, differentiate the resulting equations with respect to temperature. Finally, eliminate
the term for the rate of change of solid concentration with temperature from the equations resulting
from step 2, thus obtaining the required expression. Details of this derivation will be in a
forthcoming paper.

If the phase change is isothermal, a few comments about-our numerical scheme are in
order. Voller and Swaminathan[14] set d(~&S)/dTto a large value (large source term procedure) to
fix the temperature of the control volume undergoing solidification at the melting point value. Our
scheme employs Krylov-subspace methods, and a large value for d(ps&)/dTunnecessarily increases
the matrix condition number. This restricts the ability of these metho& to converge to the desired
tolerance. To overcome this difficulty, the neighboring cell coefficients are set to zero except the
reference (diagonal) coefficient, which is set to unity. The RHS of the matrix equation is set to the
melting point temperature. This procedure, however, yields a non-symmetric matrix, hence
GMRES is employed to solve the set of equations. This procedure increases the robustness of our
algorithm with little additional computational effort.

I
Parallelization Strategy

Given our use of implicit finite volume algorithms that frequently invoke indirect
addressing (because of the unstructured mesh connectivities), surprisingly high parallel efficiency
(> 85%) has been regularly attained for our casting simulations [15-17]. We summarize briefly our
parallelization approach here, and refer the interested reader to reference 15 for further details.

Our strategy for parallelization is to explicitly decompose and distribute the global mesh
across all processors available to perform work on the problem at hand. This strategy is
independent of the whether the memory accessible to the processors is local (distributed memory
systems) or global (shared memory systems). We do not choose to rely upon compiler directives
(as in High Performance- Fortran) or compiler “switches” for parallelism. We have instead
explicitly designed the parallelism into our software by separating all communication (indirect
addressing) from computation. All indirect addressing functions are performed in gather/scatter
procedures that are themselves parallelized by the explicit passing of messages between processors
via calls to the MPI library. Platform-specific, explicit parallelism appears only in these procedures
(instead of being littered throughout the entire source), which in turn call upon PGSLib [16] to
actually perform the MPI-based message passing.

A given time step can require several matrix solutions, so the majority of our solution
algorithm is spent in the JTpack90 linear solver library [17]. We currently solve our systems with
JTpack 90 in parallel over the entire mesh, rather than invoking a Schwarz decomposition [18].
For orthogonal meshes, we store the matrix and use preconditioned CG to solve the system. For
generally nonorthogonal, unstructured meshes, we do not store the matrix and use preconditioned
GMRES to solve the system. In all cases, we interface with JTpack90 in matrix-free form, i.e.,
matrix-vector multiplication is performed with procedures provided by Telluride. This approach
avoids having to assimilate and store the matrix, which for a generally unstructured mesh can be
intractable.

Results
We now present-filling and solidification simulations that are representative of our current

capabilities. Additional simulation results (including animations) can be found elsewhere. Since
fluid flowlheat transfer coupling has not yet been implemented, the simulations presented here
assume filling and solidification to be separate processes, i.e., an isothermal fill is simulated, after
which we simulate solidification of the quiescent melt.
Solidification of an Al-4% Cu Ingot

An A1-4%Cu alloy is solidified in a 0.05x0. lxO. lm box by extracting heat from four points
on the x=O plane by maintaining these points at 600K. Initially the melt is assumed to be
superheated by 5K at 92 lK. (The AI-CU eutectio temperature is 821 K.) A mesh of 16x32x32
(16384) cubic orthogonal cells is employed to discretize the domain.

Figure 1 shows isosurfaces of four different temperatures 195 seconds after the initial
extraction of heat. The isosurfaces corresponding to 82 lK and 916K are the eutectic and liquidus
isosurfaces, respectively, hence they demarcate the mushy zone. The isosurfaces close to the heat
extraction points are hemispherical, as expected.
Filling and Solidification of a Copper Chalice

A more realistic problem, solidification of a copper “chalice”, is chosen for the second
simulation presented here. The copper chalice (cast at a LANL foundry) is essentially a
hemispherical shell gated at the pole with a cylindrical riser, which serves to continuously supply
liquid copper to the shell during solidification (to avoid shrinkage defects).

One quadrant of the chalice is simulated, with the geometric model and computational mesh
(6480 unstructured hex elements) being generated with the I-DEAS commercial software package.
A filling simulation is performed to model the melt being gravity-poured into the riser. The total
filling time -is appmximateiytwo seconds. Figure Z-shows the ffll ‘at 0.5 seconds in one half of the
chalice (one quadrant result is reflected).

For the solidtilcation simulation, approximate boundary conditions were estimated from the
experimental data. The initial temperature of the melt is 1543K. A convective heat transfer

coefficient of 25 W/mz-K is used for the inner surface of the hemisphere and the bottom of the

chalice. For the outer surface a value of 15W/mz-K is used. The top surface is assumed insulated
because of its proximity to a heater. Figures 3 shows the liquid volume fraction field 425 seconds
after initial extraction of heat. It can be noticed from Fig.3 that liquid in the riser solidifies last and
thus no shrinkage defects can be expected in the shell. The total solidification time is about 10
minutes.

A higher-resolution (46386 cells) simulation of this problem was performed on eight
processors of a 300MHz Digital AlphaServer 8400. Using the Chaco [19] decomposition
software, the mesh was decomposed into eight submeshes (see Figure 4). An impressive parallel
efficiency (an approximate speedup of seven) was achieved. Additional parallel efficiency results
can be found in references 15 and 16.

Nomenclature
& volume fraction p density(kg/ms) C concentration(wt pet)
D mass diffusivity(rn%s) h enthalpy(J/kg) k conductivity(W/m/K)
1 back diffusion length (m) S, interracial area concentration(m-l)
T temperature(K) t time(s) v velocity(rn/s)
Subscripts:
i interfacialkunmation variable 1 liquid s solid
Superscripts:
m, m+ 1 iteration level o old time step variable ‘ after advection step

References
1. J.Ni and C.Beckermann, Metall Trans.B, 1991, 22B, 349.
2. M. C. Schneider and C.Beckermann, Metall Trans.A, 1995, 26A, 2373.
3. D.B. Kothe and R.C. Mjolsness, AIAA Journal, 1992,30,2694.
4. J.U. Brackbill, D.B. Kothe, and C. Zemach, Journal of Computational Physics, 1992, 100,
335.
5. J.B. Bell, P. Colella, and H.M. Glaz, Journal of Computational Physics, 1989,85,257.
6. J.B. Bell and D.L. Marcus, Journal of Computational Physics, 1992, 101,334.
7. E.G. Puckett, A.S. Almgren, J.B. Bell, D.L. Marcus, and W.J. Rider, Lawrence Livermore
National Laboratory Report UCRL-JC-120451, to be published in the Journal of Computational
Physics, 1997.
8. W.J. Rider, D.B. Kothe, S.J. Mosso, J.H. Cerutti, and J.I. Hochstein, Technical Report AIAA
95-0699, presented at the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, 1995.
9. W.J. Rider and D.B. Kothe, Technical Report AIAA 95-1717, presented at the 12th AIAA CFD
Conference, San Diego, CA, 1995.
10. D.B. Kothe and W.J. Rider, Los Alarnos National Laboratory Report LA-UR-94-3384, 1995.
11. D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, and J.I. Hochstein, Technical Report
AIAA-96-0859, presented at the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, 1996.
12. T.J. Barth, Technical Report AIAA-89-0366, presented at the 27th Aerospace Sciences
Meeting and Exhibit, Reno, NV, 1989.
13. J. Saltzman, Journal of Computational Physics, 1994, 115, 153.
14. V.R.Voller and C.R.Swaminathan, Numerical Heat Transfer, Part B, 1991, 19, 175.
15. D.B.Kothe, R.C. Ferrell, J.A. Turner, and S.J. Mosso, in Proceedings of the 8th SIAM
Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, 1997.
16. R.C. Ferrell, D.B. Kothe, and J.A. Turner, in Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing, Minneapolis, MN, 1997.
17. J.A. Turner, R.C. Ferrell, and D.B. Kothe, in Proceedings of the 8th SIAM Conference on
Parallel Processing for Scientific Computing, Minneapolis, MN, 1997.
18. T.J. Barth, Technical Report AGARD Publication R-807, lecture-notes .presentkz-at -the
VKI/NASA/AGARD Lectures Series on Parallel Computing, 1995.
19. B.Hendricson and R.Leyland, The Chaco User Guide: version 2, technical report SAND94-
2692, Sandia National Laboratories, Albuquerque, NM, 1995.

Table: 1- Energy and Species Equations

ahi a~ tlhl
Mixture energy:

(1
~piEi~ ~ + &ll@vZ “ VT) = V.[(Z&iki)VT] + (hl-h~):(p@

acl Svp~D~
Liquid species: ’111~ + ‘jPlv[“‘cl = (cl - c~i)~t(P~&~)+ ~—(c~-c~i)

s

Svp~Ds
Solid species: s~p~ ~ = (c~i - c~):(p~&~) + ~ (c~i - C$

s

liquidus isosurface

eutectic isosurface

liquid zone

solid zone

I liquid stream

rliquid surface

Fig. 1 Temperature isosurfaces during
A1-CU box solidification (195s)

Fig. 2 Filling of a copper chalice
(0.5s)

Fig. 3 Solid/liquid zones during copper
chalice solidification (425s)

Fig. 4 Exploded view of decomposed
mesh for 8 processors

	1:

